Semi-Infinite Optimization with Implicit Functions
نویسندگان
چکیده
منابع مشابه
Semi-Infinite Optimization with Implicit Functions
In this work, equality-constrained bilevel optimization problems, arising from engineering design, economics, and operations research problems, are reformulated as an equivalent semi-infinite program (SIP) with implicit functions embedded, which are defined by the original equality constraints that model the system. Using recently developed theoretical tools for bounding implicit functions, a r...
متن کاملQuasi-Gap and Gap Functions for Non-Smooth Multi-Objective Semi-Infinite Optimization Problems
In this paper, we introduce and study some new single-valued gap functions for non-differentiable semi-infinite multiobjective optimization problems with locally Lipschitz data. Since one of the fundamental properties of gap function for optimization problems is its abilities in characterizing the solutions of the problem in question, then the essential properties of the newly introduced ...
متن کاملComposite semi - infinite optimization
Abstract: We consider a semi-infinite optimization problem in Banach spaces, where both the objective functional and the constraint operator are compositions of convex nonsmooth mappings and differentiable mappings. We derive necessary optimality conditions for these problems. Finally, we apply these results to nonconvex stochastic optimization problems with stochastic dominance constraints, ge...
متن کاملSubsmooth semi-infinite and infinite optimization problems
We first consider subsmoothness for a function family and provide formulas of the subdifferential of the pointwsie supremum of a family of subsmooth functions. Next, we consider subsmooth infinite and semi-infinite optimization problems. In particular, we provide several dual and primal characterizations for a point to be a sharp minimum or a weak sharp minimum for such optimization problems.
متن کاملNon-Lipschitz Semi-Infinite Optimization Problems Involving Local Cone Approximation
In this paper we study the nonsmooth semi-infinite programming problem with inequality constraints. First, we consider the notions of local cone approximation $Lambda$ and $Lambda$-subdifferential. Then, we derive the Karush-Kuhn-Tucker optimality conditions under the Abadie and the Guignard constraint qualifications.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Industrial & Engineering Chemistry Research
سال: 2014
ISSN: 0888-5885,1520-5045
DOI: 10.1021/ie5029123